The main conjecture for CM elliptic curves at supersingular primes

نویسنده

  • Karl Rubin
چکیده

At a prime of ordinary reduction, the Iwasawa “main conjecture” for elliptic curves relates a Selmer group to a p-adic L-function. In the supersingular case, the statement of the main conjecture is more complicated as neither the Selmer group nor the p-adic L-function is well-behaved. Recently Kobayashi discovered an equivalent formulation of the main conjecture at supersingular primes that is similar in structure to the ordinary case. Namely, Kobayashi’s conjecture relates modified Selmer groups, which he defined, with modified padic L-functions defined by the first author. In this paper we prove Kobayashi’s conjecture for elliptic curves with complex multiplication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

The anticyclotomic Main Conjecture for elliptic curves at supersingular primes

The Main Conjecture of Iwasawa theory for an elliptic curve E over Q and the anticyclotomic Zp-extension of an imaginary quadratic field K was studied in [BD2], in the case where p is a prime of ordinary reduction for E. Analogous results are formulated, and proved, in the case where p is a prime of supersingular reduction. The foundational study of supersingular main conjectures carried out by...

متن کامل

SUPERSINGULAR PRIMES FOR POINTS ON X0(p)/wp

For small odd primes p, we prove that most of the rational points on the modular curve X0(p)/wp parametrize pairs of elliptic curves having infinitely many supersingular primes. This result extends the class of elliptic curves for which the infinitude of supersingular primes is known. We give concrete examples illustrating how these techniques can be explicitly used to construct supersingular p...

متن کامل

The main conjecture of Iwasawa theory for elliptic curves with complex multiplication over abelian extensions at supersingular primes

We develop the plus/minus p-Selmer group theory and plus/minus padic L-function theory for an elliptic curve E with complex multiplication over an abelian extension F of the imaginary quadratic field K given by the complex multiplication of E when p is a prime inert over K/Q (i.e. supersingular). As a result, we prove that the characteristic ideal of the Pontryagin dual of the plus/minus p-Selm...

متن کامل

Drinfeld Modules with No Supersingular Primes

We give examples of Drinfeld modules φ of rank 2 and higher over Fq(T ) that have no primes of supersingular reduction. The idea is to construct φ so that the associated mod ` representations are incompatible with the existence of supersingular primes. We also answer a question of Elkies by proving that such obstructions cannot exist for elliptic curves over number fields. Elkies [El1] proved t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004